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Abstract

The process of the solidi®cation of a binary alloy in a cylindrical metal mould is investigated by the method of

computational experiment. An equilibrium model is used for the mushy region. Variable technological peculiarities
are taken into account. Some results of the numerical experiments are presented and discussed. # 1999 Elsevier
Science Ltd. All rights reserved.

1. Introduction

Creating high-strength metal alloys and obtaining
from them ingots of required quality are some of the

most important problems in metallurgy. To solve them
successfully it is necessary to have some prior infor-
mation about the main regularities of the going pro-

cesses and about the magnitudes characterising them.
Examining these factors is a necessary prerequisite for
the e�cient control of the processes of crystallization.

It is well known that the properties of the ingot are
mainly formed during the solidi®cation when the alloy
changes from liquid into solid state [1,2]. Nowadays
the main qualitative regularities of the ingot formation

are known. A lot of experimental material is gathered
[3]. However, the experimental investigation is not
always possible and appropriate because it leads to ex-

periments with a lot of parameters at complicated cir-
cumstances and as a resultÐto great material
expenditures. That is why in the detailed quantitative

investigation of the obtained ingots, the computational
experiment [4]Ða combination of mathematical model-
ling and numerical methods with computer usage, is
acquiring greater signi®cance.

Diverse technological methods are used to improve
the quality of the ingots. It is very di�cult to assess
their potential when used on simpli®ed models. The

examination of real processes by the method of com-
putational experiment requires development of more
adequate models of the processes (multi-dimensional,

nonlinear) [5], construction of numerical methods of a
required quality, a program implementation of these
methods and calculation of many technological
variants.

The purpose of this paper is the investigation of
the solidi®cation of a binary alloy in a cylindrical
metal mould by the method of computational exper-

iment. An equilibrium model [6] is used for the
description of the mushy region between solid and
liquid phases. The e�ect of the basic technological

methods on the quality of ingots is studied. In par-
ticular, the gas gapping and the mould paint between
ingot and metal mould are taken into account. The
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e�ect of the bush and the exothermal mixtures are
examined.

2. Description of the model

2.1. Physical assumptions

We consider the processes of heat transfer during the

solidi®cation of a binary alloy in a cylindrical metal

mould (Fig. 1). As it is well known the crystallization of
the alloys is characterised by the existence of a two-phase
zone (mushy region) between liquid and solid phase [6,7].

Variable models for the mushy region are considered [6].
An equilibrium model for the two-phase zone is assumed
in this paper. In this model it is supposed that the process

of solidi®cation takes place in the temperature interval
(Ts, Tl). The latent heat of phase change L is given out
in this temperature interval. It is taken into account by

de®ning the e�ective speci®c heat.

Nomenclature

Bi Biot number
c speci®c heat
ds thickness of ingot shell

h space step
Ki Kirpichev number
lg width of the gas gapping

lv thickness of the mould paint
L latent heat of phase change
q heat ¯ow on the upper part of the head

Q heat ¯ow between the ingot and the mould
r, z cylindrical coordinates
Ste Stefan number
t time

tq moment of complete combustion of exothermal mixtures
T, u temperature
Tv temperature of the inner surface of the mould paint

y approximate solution.

Greek symbols
ak contact coe�cient of heat transfer
a1, a2, a3 heat conduction coe�cients

Z temperature width of the mushy region
l thermal conductivity
r density

s1, s2 heat radiation coe�cients
t time step
c solid phase volume fraction.

Subscripts

f mould
g gas gapping
k basic part of the mould

l liquid or liquidus
m metal alloy
n bush

s solid or solidus
v mould paint
1 environment.

Superscript

' dimensionless variables.
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In metallurgy it is well known, that to obtain quali-
tative ingots it is necessary to realize such conditions
for the head that it crystallizes last. This may be done

by minimizing the heat ¯ow via the lateral surfaces of
the head and by increasing its heat content. That is
why a bush of a heat-insulating material is mounted in

the upper part of the metal mould and the head is
heated by hypergolic exothermal mixtures. The heat
which is generated during their combustion is given by

equivalent heat ¯ow q. It acts for a ®xed time tq.
There is a thin thermal resistance (gas gapping,

mould paint) between the alloy and the metal mould.
The heat transfer with the environment is given by

heat conduction of Newton's law and by heat radi-
ation of Stefan±Boltzmann's law type. As usual, it is
assumed that the metal mould is ®lled instantly by an

alloy and that the initial alloy temperature is a con-
stant.
The convective ¯ow of the melt is neglected in the

considered model. Such an approach is possible in the
simulation of small ingots.
We also note that the process of crystallization of

cylindrical ingots in axially symmetric conditions of
cooling is not dependent on the angle of the rotation,
so the problem is two-dimensional.

2.2. Mathematical model

The temperature ®eld in the region D (Fig. 1) is
described by the usual heat equation

cr
@T

@ t
� 1

r

@

@r
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�
� @

@z

�
l
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�
, �r,z� 2 D,
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For the coe�cients c, r, l we assume that

c�r,z,T �, r�r,z�, l�r,z,T �

�
8<: cm�T �, rm, lm�T �, �r,z� 2 Dm

ck, rk, lk, �r,z� 2 Dk

cn, rn, ln, �r,z� 2 Dn

:

In the context of the assumed equilibrium model of the
mushy region for the speci®c heat in the ingot we have

cm�T � �

8>>><>>>:
cs, T<Ts

cs ÿ L
dc�T �

dT
, TsRTRTl

cl, T > Tl

�2�

and for the heat conductivity

lm�T � �
�
ls, TRTl

ll, T > Tl
:

We consider that c(T ) is a continued function of the
temperature:

c�T � �

8>>><>>>:
1, TRTs

Tl ÿ T

a�Ts ÿ T � � �Tl ÿ Ts� , TsRTRTl

0, TrTl

where a is a parameter.

Eq. (1) is completed by the corresponding boundary,
initial and conjugate conditions. On the axis of sym-
metry r=0 we have

lim
r40
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@T

@r
� 0, 0RzRHm: �3�

The boundary conditions are
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� ÿa1�Tÿ T1�, 0RzRHm �4�
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@z

����
z�0
� a2�Tÿ T1�, 0RrRRk �5�

l
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@z
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�
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q1�t� ÿ a3�Tÿ T1� ÿ s1�T 4 ÿ T 4

1�, 0RrRRm

ÿa3�Tÿ T1�, RmRrRRk

�6�

Fig. 1. Dm: 1Ðliquid phase; 2Ðsolid phase; 3Ðmushy region;

4Ðhead; 5Ðthin thermal resistance (gas gapping, mould

paint). DnÐbush; DkÐbasic part of the mould. Df=Dk[Dn,

D=Dm[Df .
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where

q1�t� �
�
q, 0RtRtq
0, t > tq

:

On the boundary between the bush and the basic part
of the mould as on the bottom between the ingot and
the mould the conditions of ideal contact are accepted.

This gives the following conditions of conjugation:
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Let us consider the conjugate conditions at r=Rm,

HkE zEHm in detail. By neglecting the thickness of
the thin thermal resistance we get the condition

Q � ÿlm @T
@ r

����
r�Rmÿ0

� ÿl@T
@r

����
r�Rm�0

,

HkRzRHm:

�8�

The discontinuity of the temperature at r=Rm,

HkEzEHm is determined by the contact condition on
the boundary between the ingot and the mould. If on
the inner surface of the metal mould there is not any

mould paint and the gas gapping has not yet appeared
then the conditions of non-ideal contact take place
when together with (8) the equality

Q � ak�T jr�Rmÿ0 ÿT jr�Rm�0�

holds true. We consider, that via the gas gapping the
heat transfer is realized by molecular heat conductivity

and by heat radiation:

Q � ag�T jr�Rmÿ0 ÿT jr�Rm�0�

� s2�T 4 jr�Rmÿ0 ÿT 4 jr�Rm�0�
�9�

where ag=lg/lg.
The availability of the mould paint is simulated in

the following manner [8]. Until the appearance of the
gas gapping it is assumed that the contact between the
alloy and the mould paint on the one hand and by the

mould paint and the metal mould on the other is ideal
and the distribution of the temperature in the mould

paint is linear. For the density of heat ¯ow Q via the
mould paint we obtain

Q � av�T jr�Rmÿ0 ÿT jr�Rm�0�, where av � lv
lv
: �10�

After the appearance of the gas gapping between the
ingot and the metal mould there is a double-layer con-
tact surface. The heat transfer via gas gapping is simu-
lated according to (9) by the condition

Q � ag�T jr�Rmÿ0 ÿTv� � s2�T 4 jr�Rmÿ0 ÿT 4
v�: �11�

For the mould paint by analogy with (10) we get

Q � av�Tv ÿ T jr�Rm�0�: �12�

Equating (11) and (12), we obtain a nonlinear equation
for determining the unknown temperature Tv by
T jr�Rmÿ0 and T jr�Rm�0:

Tv � avT jr�Rm�0 ��ag � aw�T jr�Rmÿ0
av � aw � ag

�13�

where aw=s2�T 2 jr=Rm ÿ 0� T 2
v ��T jr=Rm ÿ 0� Tv).

The peculiarity of the simulation of the gas gapping
is not only the nonlinear dependence of Q on the tem-
peratures T jr�Rmÿ0, Tv and T jr�Rm�0. More important

is the fact that the gas gapping is not formed immedi-
ately but after the solidi®cation of a de®nite part of
the molten metal. It is assumed, that the gas gapping

is formed after the thickness of the ingot shell ds
reaches the value ds0. Combining the conditions (8)±
(13) we obtain

lm
@T

@ r

����
r�Rmÿ0

� l
@T

@r

����
r�Rm�0

� ÿa�T jr�Rmÿ0 ÿT jr�Rm�0�, HkRzRHm

�14�

where

a �

8>>>>><>>>>>:

ak, lv � 0, ds<ds0

ag � ~aw, lv � 0, dsrds0

av, lv 6� 0, ds<ds0

�ag � aw�av
av � aw � ag

, lv 6� 0, dsrds0

�15�

and

~aw � s2�T jr�Rmÿ0 �T jr�Rm�0��T 2 jr�Rmÿ0 �T 2 jr�Rm�0�:

The initial condition for the Eq. (1) looks like
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T�r,z,0� �
�
T0, �r,z� 2 Dm

T1, �r,z� 2 Df
: �16�

Eq. (2) and conditions (3)±(7) and (13)±(16) give the
full mathematical formulation of the problem under
consideration.

We note, that similar models of crystallization of
cylindrical ingots were considered in [9,10].

2.3. Dimensionless formulation of the problem

The dimensionless formulation of the problems (3)±
(7) and (13)±(16) is done by the characteristics of the

solid phase of the ingot. Let cÄ=cr. If by c ', l ', r ', z ',
t ' and u the dimensionless variables are denoted then
we set cÄ=c 'cÄs, l=l 'ls, T=uTs, r=r 'Rm, z=z 'Rm,

t=t 'ts, where cÄs=csrm, ts=cÄsR
2
m/ls.

Dimensionless formulation of Eq. (1) looks like

c 0
@u

@ t 0
� 1

r 0
@

@r 0

�
r 0l 0

@u

@ r 0

�
� @

@z 0

�
l 0
@u

@z 0

�
,

�r 0,z 0� 2 D 0, t 0 > 0:

�17�

For the coe�cients c '(r ', z ', u ), l '(r ', z ', u ) we obtain

c 0�r 0,z 0,u�, l 0�r 0,z 0,u� �
8<: c 0m�u�,l 0m�u�, �r 0,z 0� 2 D 0m
c 0k,l 0k, �r 0,z 0� 2 D 0k
c 0n,l 0n, �r 0,z 0� 2 D 0n

where

c 0m�u� �

8>>>><>>>>:
1, u<1

1ÿ �aÿ 1�Z
�a�1ÿ u� � Z�2 � Ste, 1RuR1� Z

c 0l, u > 1� Z

l 0m�u� �
�
1, uR1� Z
l 0l, u > 1� Z

Z � ul ÿ us, Ste � L

csTs

:

After the introduction of Biot numbers Bii=(aiRm/ls),
i=1, 2, 3, k, g, v, Bisi

=(siT
3Rm/ls), i=1, 2 and

Kirpichev number Ki (t ')=(q1(t )Rm/lsTs), conditions
(3)±(7) and (13)±(16) are written down in the form
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z 0�H 0nÿ0
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@z 0

����
z 0�H 0n�0

,

u jz 0�H 0nÿ0� u jz 0�H 0n�0 , 1Rr 0RR 0n

l 0n
@u

@ r 0

����
r 0�R 0nÿ0

� l 0k
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@ r 0
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r 0�R 0n�0

,

u jr 0�R 0nÿ0� u jr 0�R 0n�0 , H 0nRz 0RH 0m

l 0k
@u
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����
z 0�H 0kÿ0
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@z 0

����
z 0�H 0k�0
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r 0�1ÿ0

� l 0
@u
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����
r 0�1�0
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where

Bi �u� �

8>>>>><>>>>>:

Bik, l 0v � 0, d 0s<d 0s0
Big � ~a 0w, l 0v � 0, d 0srd 0s0
Biv, l 0v 6� 0, d 0s<d 0s0
�Big � a 0w� Biv
Biv � a 0w � Big

, l 0v 6� 0, d 0srd 0s0

and

~a 0w � Bis2 �u jr 0�1ÿ0 �u jr 0�1�0��u2 jr 0�1ÿ0 �u2 jr 0�1�0�,

a 0w � Bis2 �u jr 0�1ÿ0 �uv��u2 jr 0�1ÿ0 �u2v�:

The initial condition takes the form

u�r 0,z 0,0� � u0�r 0,z 0� �
�

~u 0, �r 0,z 0� 2 D 0m
u1, �r 0,z 0� 2 D 0f

: �24�
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The main di�culties of the theoretical and the numeri-
cal analysis of the problem under consideration are a

result from its peculiarities, as follows:

. nonlinear Eq. (17) in the complicated region D ';

. moving discontinuities of the coe�cients of the Eq.
(17);

. nonlinear conjugate condition (23);

. discontinuous initial condition (24).

3. Numerical method

For the numerical solving of the problem (17)±(24)
we apply an e�ective ®nite di�erence method. In the
cylinder Q '=D ' � [t 'e0] we construct a nonuniform

grid

o � �o
ĥ
r � �o

ĥ
z � ot

where

�o
ĥ
r �

�
r 0i � r 0iÿ1 � hri , i � 2, 3, . . . , N, N� 1, . . . , Nn,

Nn � 1, . . . , Mr 01 � hr1
2
, hrN�1 � 0,

r 0N � r 0N�1 � 1, r 0Nn
� R 0n ÿ

hrNn�1
2

r 0Nn�1 � R 0n �
hrNn�1
2

, r 0M � R 0k

�

�o
ĥ
z �

�
z 0p � z 0pÿ1 � hzp, p � 1, 2, . . . , Pk, Pk � 1, . . . ,

Pn, Pn � 1, . . . , Pz 00 � 0, z 0Pi
� Hi ÿ

hzPi�1
2

,

z 0Pi�1 � H 0i �
hzPi�1
2

, i � k, n, z 0P � H 0m

�

ot � ft 00 � 0, t 0j � t 0jÿ1 � tj, j � 1, 2, . . .g:

The features of the constructed grid are the following:
the grid �o

ĥ
r is shifted at half grid size from the axis

r '=0; the straight line r '=1 (along which the solution

is discontinuous) is `double'; on the straight lines
r '=R 'n, z '=H 'k, z '=H 'n (along which the solution is
continuous) of the cell-centre nodes of the grid lie. The

grid condenses near the interior boundaries of the
domain D '. At small values of t ', when the process is
characterized by great gradients of the solution, we

chose a small enough time-step which then increases
several times.

To solve the quasilinear equation (17) at additional
conditions (18)±(24) we apply a decomposition method
[4]. In this method the problem (17)±(24) may be

reduced to the consecutive solving of the one-dimen-
sional heat equations

1

2
c 0
@v�1�
@ t 0
� 1

r 0
@

@r 0

�
r 0l 0

@v�1�
@r 0

�
, t 0j<t 0Rt 0j�1=2 �25�

1

2
c 0
@v�2�
@ t 0
� @

@z 0

�
l 0
@v�2�
@z 0

�
, t 0j�1=2<t 0Rt 0j�1 �26�

under the corresponding additional conditions. We

also set

v�1��r 0,z 0,0� � u0�r 0,z 0�

v�2��r 0,z 0,t 0j�1=2� � v�1��r 0,z 0,t 0j�1=2�:

Below the di�erence scheme is constructed by using a
®nite volume discretization [4] of these two equations.
In this paper we use a nonimplicit linearized di�erence
scheme, when the values of coe�cients are evaluated

by the values of the solution on the previous time step.
Let us denote by y j

i,p the approximate solution of
the problem (17)±(24) in the node (r 'i, z 'p, t 'j) $ o. Then
the di�erence approximation of Eq. (25), the conjugate
conditions and the boundary conditions along r ' look
like:

~c � y j�y
j�1=2
i,p ÿ y j

i,p

tj�1
� 1

hÿ r
i r
0
i
�W �r�

i�1=2,p ÿW
�r�
iÿ1=2,p�

i � 1, 2, . . . , M; j � 0, 1, . . . ; p � 0, 1, . . . , P �27�

where

W �r�
iÿ1=2,p �8>>>>><>>>>>:

0, i � 1

r 0iÿ1=2a� y j�y
j�1=2

i,p ÿ y j�1=2
iÿ1,p

hri
, i � 2, 3, . . . N, N� 2, . . . , M

r 0N Bi � y j�� y j�1=2
N�1,p ÿ y j�1=2

N,p �, i � N� 1

W �r�
M�1=2,p � ÿR 0k Bi1 � y j�1=2

M,p ÿ u1�

~c � y j� � 1

hÿ r
i

�r 0i�1=2
r 0iÿ1=2

c 0�r 0,z 0p, �u � dr 0
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a� y j� �
"
1

hri

�r 0 i
r 0 iÿ1

dr 0

l 0�r 0,z 0p, �u �

#ÿ1
�28�

and u is the linear ful®lment of the di�erence function
y j
i,p at ®xed p. Eq. (25), the conjugate conditions and

the boundary conditions along z ' are approximated in

the following manner

�~c � y j�1=2�y
j�1
i,p ÿ y j�1=2

i,p

tj�1
� 1

hÿ z
l

�W �z�
i,p�1=2 ÿW

�z�
i,pÿ1=2�

i � 0, 1, . . . , M; j � 0, 1, . . . ; p � 1, 2, . . . , P �29�

where

W �z�
i,pÿ1=2 �8>>><>>>:
Bi2 � y j�1

i,1 ÿ u1�, p � 1

bp� y j�1=2�y
j�1
i,p ÿ y j�1

i,pÿ1
hzp

, p � 2, 3, . . . , P

W �z�
i,P�1=2 � Ki �tj�1=2� ÿ �Bi3 � Bis2 �� y j�1=2

i,P �2

� u21�� y j�1=2
i,P � u1��� y j�1

i,P ÿ u1�, 0Rr 0R1,

ÿBi3� y j�1
i,P ÿ u1�, 1Rr 0RR 0k

�~c � y j�1=2� � 1

hÿ z
p

�z 0p�1=2
z 0pÿ1=2

c 0�r 0i,z 0u� dz 0

bp� y j�1=2� �
"
1

hzp

�z 0p
z 0pÿ1

dz 0

l 0�r 0i,z 0,u�

#ÿ1
�30�

and u is the linear ful®lment of the di�erence function
y j+1/2
i,p at ®xed i.

To approximate the integrals in formulae (28) and
(30) we use the trapezoidal rule taking into account
the discontinuities of the coe�cients not only on in-

terior ®xed boundaries of the domain D ', but also on
the moving lines of discontinuity u=1 and u=1+Z.
The systems of linear algebraic equations (27) and (29)

we solve by Thomas's procedure.

4. Numerical results and interpretation

The formulated problem is characterized by a lot of

dimensionless parameters. That is why a basic variant
is chosen to ®nd the principal regularities. With respect
to it the e�ect of the variable parameters of the prob-

lem is investigated. The calculation of the solidi®cation

of an alloy in a homogeneous metal mould (the ther-

mophysical characteristics of the bush are equal to the
thermophysical characteristics of the basic part of the

mould) when the gas gapping and the mould paint

between the ingot and the mould are not taken into
account and the upper surface of the ingot and the

mould are heat insulated is chosen as a basic variant.

The dimensionless parameters in the basic variant have

the following values; R 'n=1.165, R 'k=1.66, H 'k=0.16,
H 'n=2.4, Hm=3, c 'l=1, c 'k=c 'n=1.25, l 'l=1, l 'k=l 'n=2,

Ste=0.5, Z=0.05, a=0.2, d 's0=1, uÄ0=1.07, u1=0.01,

Bi1=Bi2=0.2, Bik=100, Bi3=Big=Biv=Bis1
=Bis2

=
Ki=t 'q=0.

At the analysis of the solidi®cation of a molten
metal in a metal mould the following characteristics of

the process are very important for the casting technol-

ogy: the time of the complete crystallization of the
ingot, the form and the speed of the movement of iso-

therm u=us=1 and the maximal temperature the

metal mould interface reaches. To obtain the direc-

tional crystallization in vertical ingots it is necessary to
realize conditions at which the front of solidi®cation is

shifted from bottom to top. The maximal temperature

of the metal mould interface determines the rate of its
wearing out.

In the circumstances of heat insulated upper surface
of the ingot and the metal mould (Bi3=Ki=Bis1

=0) in

a large interval of geometrical (H 'k, H 'n, H 'm, R 'k, R 'n)
and physical parameters the time of the crystallization
of cylindrical ingots is determined by the time of the

crystallization of an in®nitely extended ingot along z '.
In the context of such one-dimensional by space

Fig. 2. Bi3=0.2 (in the basic variant Bi3=0).

T.P. Chernogorova, P.N. Vabishchevich / Int. J. Heat Mass Transfer 42 (1999) 3351±3359 3357



approach the e�ects of the variable parameters on the

solidi®cation are considered in detail. Some results of

this research are published in [11]. In this connection

we note only that good contrivances for controlling of

crystallization are the parameters uÄ0, l 'k, c 'k, R 'k and a

particularly powerful contrivance is the parameter Biv.

Moreover, in almost all cases the decrease of the radial

velocity of crystallization is inevitably associated with

increase of the attained maximal temperature of the

metal mould. Exception in this respect is parameter Biv
which when appreciably slowing down the process of

crystallization decreases this temperature.

For in®nitely extended ingots a deep pool is formed,

where the appearance of defects is possible. To prevent

these defects the e�cient manner is the control of the

Fig. 3. c 'n=0.6, l 'n=0.06 (there are not any exothermal mix-

tures).

Fig. 4. Ki=2.5, t 'q=0.15 (there is not a bush).

Fig. 5. Ki=2.5, t 'q=0.15, c 'n=0.6, l 'n=0.06.

Fig. 6.
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¯ows on the upper surface of the ingot and the metal
mould. Such a problem is essentially two-dimensional.

We shall mentioned some speci®c examples of its nu-
merical solution.
In Fig. 2 the isotherm u=us=1 at Bi3=0.2 at vari-

able moments of time are presented. The other par-
ameters stay the same as in the basic variant. From
this ®gure we notice that inside the ingot, an area of

liquid metal stays. Isotherms u=1 at Bi3=0 are shown
by a dotted line.
We have done a lot of numerical experiments in

order to examine the e�ects of the thermophysical
characteristics and the sizes of the bush and also the
exothermal mixtures and the time of their acting. In
Fig. 3 the e�ect of the bush is presented. Here c 'n=0.6,

l 'n=0.06 is set. The e�ect of the exothermic mixes at
Ki=2.5, tq=0.15 is shown in Fig. 4. Investigations of
the combined action of these two factors are also car-

ried out. In Fig. 5 at Ki=2.5, tq=0.15, c 'n=0.6,
l 'n=0.06 the combined e�ect of the bush and the
exothermal mixtures on the alteration of the depth and

especially on the form of the pool, may be traced.
Summarizing the result obtained it may be said, that
the bush and the exothermal mixtures are particularly

powerful control factors of the process in its upper
part.
The movement of the front of the solidi®cation

when the e�ect of all the factors is taken into

accountÐbush (c 'n=0.6, l 'n=0.06), exothermal mix-
tures (Ki=2.5, tq=0.15), gas gapping (Big=0.067,
Bis2

=0.9, d 's0=0.13 ) and mould paint (Biv=0.003) is

shown in Fig. 6.
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